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DETERMINATION OF THE SPALL STRENGTH
FROM MEASURED VALUES OF THE SPECIMEN
FREE-SURFACE VELOCITY

S. A. Novikov and A. V. Chernov UDC 539.412 :539.42

Measurements of the free-surface velocity on reflection of a nonstationary shock wave make it possible
to obtain the data needed to determine the spall strength of a material o, which is calculated from the ex-
pressions [1]

Oo= PoCo(Wo— Wy)/2; 1)
0= poco(Wo"‘ w), @)

where pg is the initial density of the material; Cy, velocity of the plastic waves in it; Wj, maximum of the speci-
men free-surface velocity realized on arrival of the shock wave at that surface; Wy, value at the first mini-
mum of the free-surface velocity time dependence; W, mean velocity of the spall fragment. The values of W,
and Wk are determined from the continuously recorded free-surface velocity measured by the capacitive trans-
ducer method [2]; W can also be determined as the velocity of athin artificial (prepared) spall fragment, i.e.,

a thin foil of the same material fitted tightly to the specimen; W is the usual mean spall velocity.

The literature does not contain any analysis of the limits of applicability of these expressions or the as-
sumptions made in deriving them. We have therefore investigated the nature of the underlying assumptions
and the limits of applicability of the equations derived.

Using the method of characteristics [3], let us consider the flow in a specimen subjected to spalling in
the plane wave formulation. The X—T flow diagram is reproduced in Fig. 1a, where X is the Euler coordinate
and T is time. We assume that the material fails instantaneously in a certain plane the point F onthe X—T
diagram), as soon as the tensile stress in that plane reaches the value oy. This condition is first realized on
the last C-characteristic OF of the centered rarefaction wave LOF formed when the shock wave SO reaches
the free surface. The spall shock propagates from the fracture point F within the spall plate ¢o the right).
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It is assumed that the trajectory of this shock wave almost coincides with the C* characteristic FK passing
through the fracture point; this assumption is legitimate if the amplitude of the shock wave is not too great
and hence the spall strength o, is low.

It is also assumed that the relation determining the behavior of the material takes the form of the usual
equation of state P=£(p, 8), where p is density and S entropy. Consequently, the shear strength of the material
1s neglected. Then the equations of motion in characteristic form can be written as follows:

dX/dT == u 4 C, dP + pCdu = O; @)
dX/dT = u — €, dP — pCdu = 0; @)
dX/dT = u, dS = 0, ' : ()

where u is the mass velocity; C%= (BP/ap)S is the square of the speed of sound.

The final assumption is that the acoustic impedance pC varies only very slightly along OF and FK and
is approximately equal to p(Cy, where p, is the initial density of the material, and C, is the speed of sound at
P=0, ,

Substituting p(Cy for pC in (3) and 4), we obtain the integrals along OF and FK:
Pp — Py— pColup — ) = 05 (6)
Prp— Pp + pColup— uy) = 0. 4]

The boundary conditions take the form Py = —~0y, Py=Pr =0, 0y =Wy, ) =Wg. From (6), (7}, and the boundary
conditions there follows equation (1).

The above conditions are not satisfied for all materials. For example, inthecase of a material with
well~expressed elastoplastic behavior possessing finite shear strength the acoustic impedance cannot be as~
sumed to be constant, since the values of the elastic and plastic speeds of sound are sharply different. The
flow pattern in the X—T plane may have a rather complex structure. The X—T plane is divided by the char-
acteristics into a series of elastic and plastic regions. If information on the shear strength of the material
is lacking, then it is impossible to make detailed calculations, and it can be stated only that the spall strength
lies on the interval between the two values obtained from Eq. (1) when Cp the plastic velocity of sound) and
Ce the velocity of longitudinal elastic waves in an infinite medium) are used as Cy. The difference in the value
of oy, calculated for these two cases, is determined by the Poisson's ratio v (@t »=0.3 it is ~30%, Ce/Cp ~1.27).

For materials in which relaxation processes play a significant partthe constitutive equation cannot be
represented in the form P =f{p, 8), and the characteristic equations differ from (3)-(5), which can be demon-
strated with reference to a simple example. Reference [4] is concerned with the propagation of plane waves
in bars of an elastoplastic relaxing material. T is assumed that the plastic strain rate ép, the stress o and the
total strain £ are related by the expression Ey€_ =g(o, €), where E; is Young's modulus. It is shown that for
plane wave propagation the characteristic equations take the form

» do — poCodu = —g(a, e)dT,
do 4 poCodu = —g(o, &)dT, do — Ede = —g(o, e)dT.

The importance of the relaxation processes is expressed in the fact that the right sides of the last rela-
tions make contributions to the integrals along OF and FK (Fig. 1a) comparable in magnitude to the contribu-
tions from the left sides. These terms give corrections to (1) that depend, generally speaking, on the boundary
conditions. Consequently, it is not possible to obtain a single formula suitable for all flows.

Let us consider the question of the applicability of Eq. @) for calculating the spall strength. We write
Eg. (7) with allowance for the boundary conditions in the form oy =pCo (W, —up). This will coincide with Eq.
@) if we identify the mean spall velocity W with the mass velocity uy in the spall plane immediately before
fracture. Obviously, the relation W =up can be satisfied only under special loading conditions. For arbitrary
loading greater or lesser deviations from this equality should be observed, and hence Eq. (2) may give an in-
correct result. To illustrate this point, let us consider a colliding-plate flow in the case where the rarefaction
wave has not yet overtaken the shock front as it reaches the free surface of the target. The X—T diagram for
this flow is shown in Fig. 1b. In Fig. l¢c wehave plotted the distribution of mass velocities with respect to the
spall coordinate, whence it follows that the mean spall velocity may considerably exceed uy.

Apart from everything else, when Eq. 2) is used another source of error, associated with the experi-
mental conditions, may play a part. In fact, measuring the mean spall velocity requires a large measuring
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base and hence a large spall fragment travel time, during which the disturbing influence of the target edges,
located in the unloading zone, may make itself {¢it, This factor can lead to a lower value of the real spall
velocity as compared with ideal experimental conditions. Since these edge effects are not usually monitored
during the experiment, they can lead to unverifiable errors incalculating the spall strength from Eq. 2).

Thus, in cases where the shear strength or relaxation processes cannot be neglected, using Eq. (1) may
lead to appreciable errors in determining the spall strength of the material. The use of Eq. €2) is justified
only under special loading conditions, which are different for each specific type of equation of state.
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EXPERIMENTAL ~THEORETICAL INVESTIGATION
OF THE REBOUND OF SHORT RODS
FROM A RIGID BARRIER

V. M. Boiko, A, 1. Gulidov, UDC 538,374
A. N. Popyrin, V. M. Fomin,
and Yu. A. Shitov

The present paper is a natural continuation of [1, 2], which gave a numerical simulation of the rebound
of short homogeneous cylindrical and conical rods in the two-dimensional formulation. The integral criterion
introduced in connection with the determination of the moment of rebound is applied not only to homogeneous
rods but also to rods composed of different materlals The results of the numerical simulation are compared
with the experimental data.

1. The physicomathematical formulation of impact problems, the definition of rebound, and the boundary
and initial conditions were given in [1, 2] for homogeneous rods. We will now consider the case of a cylindrical
rod composed of different materials impacting against a rigid barrier.

Problem 1. A cylindrical rod of length L, and radius Ry consists of two materials, The materials are
arranged in layers parallel to the axis of symmetry. The inner cylinder has the radius Ry/2. The thickness
of the outer sheath is also Ry/2. The impact velocity v;=50 m/sec. At the boundary between the layers the
condition of perfect mechanical contact is satisfied. Mathematically, this condition reduces to the equality
of the displacements and stresses at this boundary.

We will find the solution of the problem by the modified Wilkins method [2, 3]. In the numerical solution
of the problem the calculation proceeds without explicit identification of the interface. The calculations were
made for steel and copper layers with constants: p;=7.85 g/em?®, k=170 GPa, 1 =80 GPa, Vo=1.2 GPa — steel;
py=8.9 g/cm?®, k=139 GPa, 41=46 GPa, y,=0.3 GPa — copper, where Py is the density of the material, k is the
bulk modulus, ¢ is the shear modulus, and y, is the yield point.

Figure 1 shows the force acting at the rod —barrier interface as a function of timet for four combinations
of materials (1 and 4 — solid steel and solid copper, respectively; 2 ~ inner cylinder copper, outer sheath steel;
3 — inner cylinder steel, outer sheath copper). We note that for the same initial impact velocity and the same
geometry, the mass of the rods will be different and hence so will be the initial kinetic energy of the rods.
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